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Abstract--The low Reynolds number hydrodynamics of a droplet moving in a quiescent fluid between two 
parallel flat plates is studied. The method of reflections is utilized to obtain approximate solutions for the 
pressure field, the drag force exerted on the droplet and the deformation of the droplet. 
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I .  I N T R O D U C T I O N  

The low Reynolds number motion of small droplets moving in a narrow gap occupied by liquid 
is of considerable practical interest. The effect of small spherical rigid particles, droplets or bubbles 
on the performance of hydrodynamic bearings is just one case out of many dealt with in the 
literature. It was theoretically investigated by Haber et al. (1987) who addressed two particular 
cases: the effect of particles suspended in the lubricating film of a long Rayleigh slider and their 
effect on a long journal bearing. For both cases it was shown that the load carrying capacity is 
negligibly affected by the presence of the particles (rigid spheres or droplets), whereas the friction 
is increased appreciably. Utilizing the low Reynolds number solution for a single droplet interacting 
with two walls, but not with adjacent droplets, they obtained the integrated effect of a dilute 
suspension on the bearing performance. Thus, the basic flow problem is a superposition of: (a) the 
flow field around a single droplet moving in a narrow gap occupied by a quiescent liquid; (b) the 
flow field around a single droplet at rest submerged in Couette flow; and (c) the flow field around 
a droplet at rest submerged in two-dimensional Poiseuille flow. 

In this paper only problem (a) is addressed; the other two will be the subject of a subsequent 
paper. 

Problems concerning rigid particles moving slowly in viscous flows have extensively been treated 
in the past. Problems concerning droplets caught less attention and are of a higher degree of 
difficulty due to the fact that the shape of the droplet is a priori unknown and that an additional 
flow field internal to the droplet must be solved. 

Generally, any solution that is obtained for droplets can be applied to bubbles or rigid particles 
since they can be viewed as droplets of zero or infinite viscosity, respectively. 

The flow field around a droplet moving in an unbounded fluid can be viewed as a zero-order 
approximation of a bounded case if the ratio between the diameter of the droplet and its distance 
from the walls is much smaller than unity. 

The flow field around a rigid sphere moving in an arbitrary unbounded flow was presented by 
Happel & Brenner (1973). Hetsroni & Haber (1970) generalized this solution by treating droplets. 
In addition, they presented a first-order approximation for the distortion of the droplet shape, 
assuming that the ratio between shear and surface tension forces is small. Haber & Hetsroni (1971) 
further extended their solution to obtain a second-order approximation for the flow around a 
droplet moving in an arbitrary unbounded flow field. For the case of Poiseuille flow they showed 
that the droplet would translate perpendicular to the cylinder axis. 

Youngren & Acrivos (1976) developed a numerical technique to calculate the steady deformation 
of an inviscid droplet placed in an extensional flow. The three-dimensional Stokes equations for 
the flow outside the droplet were replaced by a two-dimensional integral equation to be satisfied 
on the surface of the droplet. The droplet shape was adjusted until the zero normal velocity 

483 



484 M. SHAPIRA and S. HABER 

condition was satisfied. Rallison & Acrivos (1978) extended their method to include the case of 
viscous droplets. Special attention was paid to the case of  uniaxial extensional flow for which the 
time-dependent distortion of  an initially spherical droplet was calculated. 

Three major approaches were used in the past to solve the low Reynolds number flow in 
particulate systems: the exact analytical approach utilizing curvilinear coordinates; the approximate 
method of  reflections; and the numerical method of collocation. 

Stimson & Jeffery (1926) used the bipolar coordinate system to solve the case of  two rigid spheres 
of equal diameter moving along their line of  centers. Brenner (1961) used the same coordinates 
to obtain the flow fields around a rigid sphere which translates towards a flat rigid wall and towards 
a flat free surface. Dean & O'Neill (1963) and O'Neill (1964) used the bipolar coordinates to obtain 
the three-dimensional solution for a revolving rigid sphere near one wall. Goldman et al. (1967a, b) 
extrapolated the results obtained by Stimson & Jeffery (1926) to include zero gap thickness. Haber 
et al. (1974) utilized the same coordinates to obtain the general solution for two spherical droplets of 
various sizes translating along their line of centers in a stationary fluid. As particular cases, one can 
derive the case of two rigid spheres moving along their line of centers (the liquid viscosities inside 
the droplets are set to infinity), the case of a droplet moving towards a rigid surface (the radius 
of one droplet and the liquid viscosity inside it are set to infinity) and the case of  a droplet moving 
towards a free surface (the radius of one droplet is set to infinity and the viscosity of the liquid 
inside it is set to zero). For  the case where a particle touches the wall, O'Neill (1968) and Goren 
(1970) used the tangent sphere coordinate system to enhance convergence of the solution series. 

For all the above cases an analytical solution was obtained since it was possible to describe the 
boundaries by fixing a single coordinate in a particular coordinate system. When the boundaries 
consist of two walls and a sphere no such coordinate system is known to exist. However, the 
previously mentioned cases form asymptotic solutions for the case of a droplet placed at a large 
distance from one wall and at close vicinity to the other. 

A solution method that accounts for topologically different boundaries was described by Happel 
& Brenner (1973) and is known as the method of reflections. There is no proof  of its uniform 
convergence, however, in particular systems it can be shown that the contribution of  the n th 
reflection is of the order of (a/h) n, where a is the particle radius and h is the distance of the droplet 
from the nearest wall. The solution converges very rapidly for ratios of a/h < 0.2, quite poorly for 
a/h > 0.8 and blows up for a/h = 1. In our case, where the boundaries consist of two fiat walls 
and a sphere, Lamb's (1932) solution in spherical coordinates was used to find the odd reflections 
which satisfy the boundary conditions over the sphere's surface. A general solution for Stokes 
equations in cartesian coordinates provided for the even reflections which satisfy the boundary 
conditions over the walls. 

The flow field around a rigid sphere moving between two parallel plates was analyzed by Happel 
& Brenner (1973). Numerical values were obtained for the drag force exerted on the sphere for 
only two specific lateral locations of  the sphere (h /H = 0.25, 0.50). 

It is shown in Happel & Benner (1973) how to utilize the same method to obtain the solution 
for the flow field around a stationary rigid sphere in Couette and plane Poiseuille flow. The method 
of reflections was also used to obtain the drag force exerted on a rigid sphere moving perpendicular 
to a wall. Comparison of this solution with the exact solution given by Brenner (1961) shows that 
an approximate solution composed of  two reflections only is in very good agreement with the exact 
solution when a/h < 0.1. 

Wakiya (1953) also used the method of reflections to obtain the solution for a rigid sphere 
moving in a circular pipe. Here, a general solution for Stokes equations in cylindrical coordinates 
was employed to satisfy the boundary conditions over the pipe's walls. Hetsroni et al. (1970) used 
the same method to solve the problem for a droplet moving in Poiseuille flow. 

Ho & Leal (1974) analyzed weak inertia effects for a rigid sphere moving in Couette and plane 
Poiseuille flow utilizing a regular perturbation scheme. As a zero-order solution they used Faxen's 
derivation. 

Sano & Hasimoto (1978) developed a reflection method by which the flow field around a sphere 
moving between nonparallel walls was derived. 

Up until now and to the best Of o u r  knowledge, there is no other analytical method by which 
these difficult problems can be solved. 
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Gluckman et al. (1971) were the first to develop the semi-analytical collocation method for 
unbounded multiparticle axisymmetric Stokes flows. Ganatos et al. (1978) investigated the case of 
two and three rigid spheres translating in an unbounded asymmetric field using the collocation 
method. The main problem that they enountered was how to pick the collocation points so that 
the scheme yields correct results. Comparison with the exact solution of Stimson & Jeffery (1926) 
showed that 12 properly located collocation points were sufficient to yield a very good agreement. 

Ganatos et al. (1980a, b) solved for a rigid sphere moving in a general direction between two 
parallel walls. Dagan et al. (1982) ' used the collocation method to obtain the solution for a rigid 
sphere translating near a finite wall. 

Normally, the coll0cation method is not limited to cases where a/h << 1. Comparison between 
the collocation method and the method of reflections shows that the numerical results coincide for 
a/h < 0.2. 

Experiments with a single particle or droplet or multiparticle systems have been conducted 
extensively in the past. 

Taylor (1934) carried out experiments with a droplet in Couette and hyperbolic flows. He found 
that the droplets deform and possess an ellipsoidal shape when the ratio between the shear forces 
and the surface tension is < 0.2. This observation validates the assumption that for small distortion 
parameters the droplet is nearly spherical and as a zero-order approximation a spherical shape can 
be assumed. 

Goldman & Mason (1962) investigated the motion of a droplet in Poiseuille flow. They observed 
that the droplets perform a slow radial translation within the tube and that it increases with the 
distortion parameter. The experiments confirmed qualitatively the solutions obtained by Taylor 
(1932). 

Tachibana (1973) let a rigid sphere translate in a pipe due to gravitational forces and reported 
that for Re = 5 to 8 the rigid spheres translate almost parallel to the walls. These results confirm 
the theoretical work by Ho & Leal (1974). 

Ho & Leal (1975) let a droplet translate in a circular pipe under gravity. Their results show that 
the droplet deviation from sphericity increases with the distortion parameter. This observation 
confirms the results obtained by Hetsroni et al. (1970). An experiment similar to Tachibana's (1973) 
was conducted by Miyamura et al. (1980) for a rigid sphere translating between two parallel infinite 
walls and in conduits of square and triangular cross sections. These experiments confirm Faxen's 
work for a/h < 0.2. 

Coutanceau & Thizon (1981) examined a bubble translating in a pipe. They found that for low 
Reynolds numbers and a/h < 0.2, the bubble remains almost spherical For a/h > 0.6 it has a 
cylindrical shape enclosed with two spherical caps. In the intermediate range it has an ellipsiodal 
shape. 

The above experiments prove that, for the case of a droplet moving between two parallel walls, 
the method of curvilinear coordinates is not feasible. The method of collocation can not be used 
either, since, the location of the surface of the droplet is not a priori known. Thus, the method 
of reflections seems to have the main attraction, although we are limited to large separations 
between the droplet and the walls. 

The mathematical solution for the flow fields is based on the methods introduced by Liron & 
Mochon (1976). The derivation of the drag force and of the deformation of the droplet is based 
on the analysis given in Hetsroni & Haber (1970) for a droplet submerged in an unbounded 
arbitrary flow field and a given small distortion parameter. 

2. STATEMENT OF THE PROBLEM 

Consider a droplet moving in a quiescent fluid between two parallel flat plates at an arbitrary 
lateral location. The droplet translates parallel to the plates and maintains a constant velocity U0. 

The distance, H, between the two plates and the distance, h, of the center of the droplet from 
the lower plate are fixed. In the stationary cartesian coordinate system chosen, the plates are defined 
by z = 0 and z = H, and the droplet velocity is given by U0i, where i is a unit vector in the x 
direction (See figure 1). 
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Figure 1. Configuration of the problem. 

The fluids involved are assumed to be homogeneous, isothermal, Newtonian and of  constant 
densities. The flow around the droplet is creeping, in other words, inertia terms in the momentum 
equations are negligible. 

With these assumptions the momentum and the continuity equations are as follows: 

for the continuous fluid, 

V2 u = _1 Vp 

[1] 

V 'u  = 0; 

for the fluid in the interior of  the droplet, 

V : u '  = 1 Vp' 
[2] 

V.u'  = 0; 

where u and u' are the velocities exterior and interior to the droplet respectively, p and p '  are the 
pressures and g and /~ '  are the respective viscosities. 

The boundary conditions are as follows: 

at z = 0 and z = H (on the plates), 

at the surface of  the droplet, 

u = 0 ;  [3] 

u' = u, [4] 

xn - ~ = a + In, [5] 

u.in = U0i'in; [6] 

where in is a unit vector normal to the interface, % and x~ are the normal stress vectors (% = ~.in) 
based on the velocities u and u' respectively, Rt and R2 are the principal radii and a is the surface 
tension. 

3. T H E  S O L U T I O N  

The solution of  the field equations with the given boundary conditions, should explicitly yield 
the flow field in the interior of  the droplet and exterior to it, as well as the general equation of 
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the interface. However, the simultaneous solution of  the flow fields and of  the interface equation 
is a formidable task. An iterative procedure is therefore adopted. For  a start, the droplet is 
postulated to be spherical, and the flow fields are determined independent of the normal component 
of boundary condition [5]. Later, this latter condition is utilized to determine the deviation of the 
interface from sphericity; and the interface thus determined can then be used for a second iteration 
of the flow fields. 

From experimental observation it is well-known that small droplets and bubbles migrating under 
gravity are nearly spherical. Therefore, the calculations start out by assuming the droplet to be 
spherical. 

The solution is based on the method of reflection described by Happel & Brenner (1973). It 
consists of a sum of velocity fields, all of  which satisfy [1] for the velocity field of the continuous 
medium and [2] for the velocity field interior to the droplet. Each of  the solutions partially satisfies 
the boundary conditions. 

The reflected fields are 

u = ~ UK [7a] 
K=I  

and 

u ' =  ~ u' [7b] 2 / ( -  1, 
K = I  

where the summation subscript indicates the reflection number. 
The boundary conditions to be satisfied by the reflected fields are as follows: 

for the first reflection, 

and at r = a 

u l = O  at r ~  [8] 

U I ---- U'*I, 

ul "it = U 0 i ' i .  

(I - irir)'(Lt -- ~ , )  = 0; 

for the 2Kth reflection (K = 1 , 2 . . . )  at z = 0, z = H, 

[9a] 

[9b] 

[9c] 

u2r+U2r_ I =0 ;  [lO] 

for the (2K + 1)th reflection (K = 1, 2 . . . )  at r --, oo, 

U2K + I ~ 0 [11] 

and at r = a 

u2K+l + u2x= u~x+l, 

U~K+,'ir = 0. 

(I -- iri.)(Zr2X +, + ~'2X --  ~;2X +,) = 0; 

where r denotes the radial coordinate and a is the radius of  the droplet. 

[12a] 

[12b] 

[12c] 

By direct substitution it can easily be verified that u and u' as defined in [7a, b] satisfy boundary 
conditions [3]-[6]. 
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3.1. The First Reflection 

The first reflection is the solution for the flow in and around a droplet moving in an unbounded 
quiescent field. It yielded the following expressions for the velocity components and the pressure 
outside the droplet: 

Bt~Uoa{1 x 2 x 2 
u~.i= L ~ - - - \ r + - ~ ) l + B 2 I U o a 3 ( ~ - 3 ~ - g ) ]  

"r °°xYl E uI'j  = , L T -  ~ +B2 Uo a3 - 3 x y ]  
r 5 _] 

[13] 

and 

r Uoa xz7 _[ - r s3xz]j . , .k = + Voa  

[ ~ 1  [14] p = Bi pUoa • 

Here the origin of the coordinate system is located at the center of the droplet, and i, j and k 
denote unit vectors in the x, y and z directions, respectively. The coefficients, B~ and B2, are 
functions of the viscosity ratio 2 =/~'//~, namely 

1+~,~ 
1 + 2  

2 

B2= i + 2 '  

[15] 

3.2. The Second Reflection 

The only boundary conditions to be satisfied by the second reflection are 

u z + u 2 = 0  at z = O , z = H .  [16] 

The solution for u2 is constructed in two steps. For the first step image droplets are so distributed 
as to make two components of Ul + u2 vanish on both boundaries. For the second step we solve 
for a correction field, using a two-dimensional Fourier transform, so that the third component 
vanishes on the boundaries. 

Thus, the solution for u2 has the following form: 

u2 = v' + w, [17] 

where v' stands for the flow field induced by the image droplets, and w denotes the correction field. 
A better view of the symmetry of the solution is obtained if a field v is defined by 

¥ = U I + V' ,  

where v is the velocity field induced by the droplet together with all its image reflections. Hence, 
w must negate the value of v on the plates to satisfy [16]. 

3.2.1. The first step (reflect image drops) 

The sum v of the flow field induced by the droplet and its images (see figure 2) is symmetrical 
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" "  T ~" T-~/T.. ~° ~" ++' U o t y ~ ~ ,  j -  Uol 

Figure 2. The droplet and its reflected images. 

a round  z = 0 and  z = H. This  ensures that  the componen t s  o f  the velocity v parallel to the 
boundar ies  vanish. 

The  cartesian componen t s  of  v a re f  

Uoa ~ [-['1 1'~ ( x  2 x 2 ) l  
v . i =  B,-r.A:Ltc-~)+ 

+B2U°a'.=~_=[(~-~-~n)+ \ r 5 ~ ,]J 

v ' j : ~ I - " 2 - ' - n A =  ~ ~ "J~B2O°a3n=~-oot" ~nn R~ / 

. _Uo~ ~ [/,~-h+2.m /,z+h+2.m] 
V'K ~ 1 ~ I 1 - -  ~ ' 3 

2 .= _<~ r .  R .  3 

+ B2U°a3 . . . .  ~ L V - 3 x ( z - h  + 2nH) --~r. - 3 x ( z  +h  + 

[]8] 

and the associated pressure field induced by the image reflections is 

q = Bi#Uoa ~_ x 

where 

r2 = p2 + (z - h + 2nil) 2, 

R~ = p2 -I- (z + h -t- 2n i l )  2 

and 

[19] 

[20a] 

[20b] 

p2 = X2 d_ y2. [21] 

fThe terms preceded by B 2 would eventually be neglected since their contribution is of the order of (a/h)3, whereas the order 
of accuracy in this paper is (a/h)2. However, they were not discarded, in case higher-order approximations are attempted 
by others in the future. 
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By using the Lipshitz integral as shown by Liron & Mochon (1976) the following results are 
obtained (see the detailed derivation in appendix A): 

for 0 < z  <h,  

(1 ~. - R-..1)=2f f Jo(P~) sinh[~(H-h)]sinh(~z)d~; sinh(~H) [22a] 
n =  oo 

and f o r h < z < H ,  

1 l = ;0 J 0 ( p ¢ ) ~ s m  t g ( n - z ) ] d ¢ .  , ~  ( ~ - ~ )  2 ~ sinh(~h) . h . .  [22b] 

Identities [22a, b] and their derivatives make it possible to transform equations [18] and [19] into 
an integral form, in a manner similar to Liron & Mochon (1976), namely: 

for 0 < z  <h,  

f f [  ~_~ ] sinh[~(H - h)] v.i = B~ Uoa Jo(P~) + J~(~P) ~ / ~ )  sinh(~z) d~ 

X 2 X 2 +B2Uoa3I~2[ ( l_2_~3)~ j l (~p )+(p )~2 jo (p¢) ]  sinh[~(H-h)] . . . . . . .  
do LkP ~ I ~ )  smnt¢z)a¢ 

f f  sinh[~ (H - h)] . . . . . . .  
v.j = B, Uoa x y_y ~j,(~p) p sinh(~H) smntgz~ag 

+ B2 Uo a3 [~ - 2 xy -2 . . . .  sinh[~(H - h)] 
.io -~ ¢ J2tgP) ~ t 7 )  sinh(~z)d~ 

f ~ sinh[~ (H - h)] 
v.k = B, Uoa o - x~J°(~P) sinh(~H) cosh(¢z) de 

+ B2Uoa3 f /  2 ~ 2 j , ( ~ p ) s i n ~ / ~ , h ) ]  cosh(¢z) d ~ l ¢ ,  

[23] 

and 

J '~ sinh[~ (H - h)] 
q =B,l~Uoa 2 x ~J,(~p) sinh(~z) d~. [24] 

0 P sinh(~H) 

For h < z < H replace sinh[~(H - h)] by sinh(~h), sinh(~z) by sinh[¢(H - z)] and cosh(¢z) by 
- c o s h [ ~ ( H -  z)] under the integral sign. 

3.2.2. The second step (the correction field) 

The correction w has to satisfy the following boundary condition on the two plates: 

v + w = 0. [25] 

Hence, at z = 0, 

w.i = w.j = 0, [26a] 

fo ~ sinh[¢(H -- h)] d~ 
w.k = B 1Uoa xCJ°(¢P) sinh(¢H) 

- B2 Uo a3 [~ 2x ¢2j,(~p) sinh[¢(H - h)] 
.)o P sinh(~H) 

d~; [26b] 
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and at z = H, 

w.i = w.j  = O, [27a] 

fo~ sinh(¢h) foo sinh(~h) . .  
w. k = - B ,  Uoa X~Jo(¢p) sinh(~H) d~ + B2Uoa 3 2x ¢~j,(¢p) _ _  a¢. [27b] 

0 j0 P sinh(~H) 

To solve [1] with the foregoing boundary conditions, the two-dimensional Fourier transform is 
introduced: 

C, (2,, 22, z)  = ~ _ ~ ~ g(x,  y, z)exp[i(2,x + 22y)] dx dy. [28] 

Note that the caret sign ^ denotes a Fourier transform. 
The transformed momentum and continuity equations [1] are 

L[I, Vx] = - i2__2 g 
It 

L tI~y] = - i2__~2 g 
# 

and 

l a g  
L[ff' ] - 

I~ 8z 

dWz i(211~,x..F 22[~,y)=O, 
Oz 

where S is the pressure associated with the velocity 'W. 
The transformed Laplace equation for the pressure is 

L IS] = O, 

where 

[29] 

[30] 

[31] 

~/ . i  = W. j  = 0 
• 2, d ~ls inht~(H-h)]~ s i n h [ ~ ( H - h ) ]  

VC'k= - B ,  tUoa~-~-~ [ sinh(~H) J - B22iU°a32' ~ l q )  ; 

and at z = H, 

~¢.i = ~¢.j = 0 t 
2, d )" sinh(¢h) ~ sinh(¢h) 

~¢.k  = B, iUoa-~-d- ~ [ ~ j  + B22iUoa32, sinh(¢H)" 

t [33a] 

[33b] 

The general solution of  [31] can be written as 

= 2/z[A sinh(~z) + B cosh(~z)]. [34] 

at z = O ,  

As proved by Sneddon (1951) it can be shown that the two-dimensional Fourier transform in x 
and y of  g ( x , y , z )  is equal to the zero-order Hankel transformation if the function to be 
transformed has the following property: g(x,  y, z ) = g ( p ,  z). 

For the transformed boundary condition (see appendix B) we thus get: 

0 2 

L - s z  2 ¢2, ¢ 2 = 2 2 + 2 2  . [32] 



492 M. SHAPIRA and S. HABER 

The general solution of [29], utilizing [34], can be written as 

W-i = C sinh(~z) + D cosh(¢z) + ~ (H  - z)[A cosh(¢z) + B sinh(~z)] 

i22 
"t~¢. j = E sinh(~z) + F cosh(~z) + --( (H  - z)[A cosh(~z) + B sinh(~z)] [35] 

~¢.k = G sinh(~z) + Icosh(~z) + (z - H)[A  sinh(~z) + B cosh(~z)]. 

Substituting [35] into the transformed continuity equation [30] yields the coupled equation 

A = i (J . lC  + 2 2 E ) - ~ I  " ]  

B i(2~D + 22F) -  CG. f [36] 

Introducing [35] into the six transformed boundary conditions [33a, b] the six unknown 
coefficients, C, D, E, F, G, I may be expressed as functions of A and B. Then, utilizing [36], the 
following expressions are derived for A and B: 

sinh2(~ H ) I ~ H ] 
A = sinh2(~H ) _ ~2H2 ~ sinh-~H) Ks - K~ [37a] 

and 

B = 

where 

1 
2,,2" ~ {[cosh(¢H)sinh(~H) + ~H]K, - [sinh(~H) - ~H cosh(~H)]K2 }, [37b] 

sinh2(~n) ¢ /-/  

K, = l'~'Az = 0); K2 = g'z(Z = H).  [381 

Consequently, the explicit expressions for the transformed velocity components of the correction 
field are 

and 

-2 F~(~) [39a1 W ' i = - 2 ,  -~ , 

, ,  F,(~) 
~ ¢ ' j = - z ,  z2 ~ , [39b] 

'~¢-k = i21 F2(¢) [39c] 

2 2 F,(¢) = #t , -~ , [40] 

where Fl(~), F2(~) and F3(~) are given in appendix D. 
In order to obtain S and W in the real domain a two-dimensional inverse Fourier transform must 

be carried out. Since, however, it is identical with the Hankel inverse transform of order zero, the 
velocity field assumes the form (see appendix C) 

wx = dx  Jt(~P)Fl(~)d~ 

d I ~ x ~ j , ( ¢ p ) F , ( ¢ ) d  ¢ [41] 
Wy= dy3o P 

d x;; 
w ~ -  dx  o Jo(p~)F2(~)d~ = P ~J,(p~)F~(~)d~, 
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and the pressure field is 

x;: s = 2ktUoap ~JI(Cp)F3(C)dC. [42] 

The complete solution, consisting of reflections up to second order, can be written as 

u = v + w ,  [43]  

where v is defined in [23] and w in [41]. 
The corresponding pressure field consists of two contributions, 

p = q + s, [44] 

where q is defined in [24] and s in [42]. 
Higher-order reflection contributions are of order (a/H) 2 and are not calculated. 
Note that the integrations in [41] and [42] have already been brought into a form 

ensuring convergence and can be carried out numerically. As an example the pressure distribution 
along the plates has been calculated. All other integrations can be carried out along the same 
lines. 

3.2.3. The pressure distribution along the plates 

A knowledge of the hydrodynamic pressure exerted on the plates is of particular significance 
in hydrodynamic lubrication, because it sustains the forces exerted on the lubricated element 
and determines the performance of the journal bearing. A careful check of the expression for 
the pressure reveals that it consists of two terms, one of which is multiplied by B~Uoa, the 
other by B2Uo a3. The first term is of order a/H, the other term of order (a/H) 3. However, 
reflections of order higher than the second contain terms of order (a/H) 2, so that, for second- 
order reflection solutions, all terms of order higher than (a/H) must be discarded to retain 
consistency. 

After this simplification, a numerical quadrature is carried out along the following lines. 
The integrand in [42] is a product of two functions, F3(C) and J~(PC), the first of which 

is positive-definite and tends exponentially to zero, while the second oscillates with a period 
tending to 7t for large values of (PC). Thus, the asymptotic expansion of JI(PC) has the 
form 

J,(PC) = ~ cos(pC -- ~lr). [45] 
\/ pC 

Equipped with this knowledge, two methods of integration are utilized: 

(l) For small values of p, integration is carried out between every two consecutive 
zeros. This results in an alternating, very rapidly converging series, in which every 
term is larger than the sum of all the following terms. Consequently, an easy 
criterion of convergence is obtained. 

(2) For large values of C we used the method, presented by Liron & Mochon (1976). 

Thus, if b is real, F(z) is an even function of z, and F(z) decays exponentially along the real axis, 
the evaluation of a general integral of the following form reads 

f f  ,1~ (bx)x v + 'F(x ) dx = ni ~ res [F(z )z v + I H~l)(bz )], [46] 
i 

where the residues are in the upper half-plane including one-half of the residue at z = O. 
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With the aid of the above identity, the pressure in its transformed form can be expressed as an 
infinite series, namely: 

Bd~Uoa p - 1 2 x ~  - H  p ,=, ' \ H f  1+T,2)1/2-1 ~sh 1 - 2r~- Im H (1) 

hT, 7", h z - h  
× { s i n h ( ~ _ ) c o s h ( ~ z )  + ~ [sinh(__H__ T,) + T, cosh~__H__ T, ) / z + h  

- ( 1 +  T,z )'/2 sinh ( +h 1 . , ) ] t _  T, sinh(-HZ)Cosh(-~z)}7" I", 

x ~ . [nnh\ . [ n n  "~ [nr~p'~ 
+ 4 p  , ~  nzc s , n ~ - ) s , n ~ - ~ Z ) K l ~ - - ~ -  ) ,  [47] 

where T, is the root of order n of the equation sinh 2 T = T in the first quadrant. This representation 
shows clearly the asymptotic behavior of  the pressure with the distance between the plates. 

Representation [42] for the pressure converges very rapidly for p > 1, as can easily be verified. 
Figures 3a-c illustrate the pressure variations at the wall z = 0 along the lines y = 0, 0.1 H, 0.2 H, 

respectively. 

3.3. The Drag Force 
In this section the drag force exerted on a droplet moving in a quiescent fluid between two 

stationary plates will be considered. For bubbly lubricating films it is also significant to analyze 
the case of  a free droplet moving in a "Couette" or "Poiseuille" flow. 

Based on the reflection solution, the drag force can be calculated by summing up the contribution 
of each reflection: 

FD = ~ FD, [48] 
i = 1  

where Fo, is the drag force due to reflection i. 
The generalization of  Faxen's law for a spherical fluid particle, as proposed by Hetsroni & Haber 

(1970), provides a simple technique for obtaining the drag force exerted on the droplet: 

1 + 1 2  )~ FD = 4n#a ~ [v~ -- U],=0 + a 3 ~ [Vp~],=0, [49] 

where v~ is the unperturbed velocity, U is the velocity of  the droplet, and r = 0 denotes the droplet 
center. 

3.3.1. The drag force of the first reflection 
According to the first reflection, the droplet moves in an unbounded stationary field. In this case 

vrf = 0 and Vp~ = 0. Introducing these results into [49] yields 

1 + 3 2  
Fd~ = --4rt#a ~ Ui. [50] 

3.3.2. The drag force of an even-number reflection 
The second, fourth etc. reflections are regular Stokes solutions between the two plates. Thus, 

we have 

Fd2 , =0 ,  k = 1 , 2 . . .  [51] 

3.3.3. The drag force of the third reflection 
Equation [49] enables the drag force due to the third reflection to be obtained without an explicit 

solution of  the velocity and pressure fields. The second reflection is considered as the unperturbed 
velocity field, and the droplet is assumed to be stationary. These velocities are substituted into [49]. 
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The expression for the drag force in [49] is the sum of two terms--the first is of order a/H, the 
second of order (a/H)3--as such it must be disregarded in accordance with the approximation order 
of the solution. 

Hence [49] simplifies to 

1+32 
Fd~ = 4 n # a ~  tv -- ul + w),=0, [52] 

where v, u, and w, are as given in [18], [13] and [41], respectively. 
As before, order of magnitude considerations lead to the conclusion that the terms in v and w 

that are preceded by B2Uo a3 must be disregarded. 
The expression for w at the center of the bubble, point (0, 0, h), is (see appendix C) 

w(O'O'h)=I-½ I~2Ft(~'z=h)d~] .)0 [53] 

The expression for ( v -  u,) at the same point is 

-B U°ar2 I-2"hl =~ ( 1  
, l ) l  

2(h + n i l )  2 ( n / ~ - h )  ' [541 

[55] ( V y -  uy,)r =o = % - Uz,),= o = 0. 

A different form of [54] is 

sinh2(¢h) d~ ] [56] (vx-Ux,)= B, Uoa[-1-  f o ~ e X p ( - ~ H ) ~  . 

Introduction of [50]-[56] into [48] results in an expression for the drag force of order (a/H): 
4n " 1 + 3 2 (  1 +3)" a - '~ 

FDx=-- #u°a--i--~ \ 1 + -1 -7~ H C'dl' -r / [57] 

where 

C d = ~ - + H  exp(--o ) ~ + B - - - - ~ , ( ; , z = h )  d~ [581 

and F~(~) is given in appendix D, less the term preceeded by Bz Uo a3. The drag force factor Cd is 
described for h/H = 0.2 to 0.8 in figure 2. Its numerical values for various locations, h/H, are given 
in table 1. 

T a b l e  1. T h e  d r a g  f o r c e  f a c t o r  

Cd, F a x e n ' s  s o l u t i o n  
h/H C d, th i s  s o l u t i o n  ( H a p p e l  & B r e n n e r  1973, p. 326)  

0 .125  3 .0816498  - -  

0 .150  2 .6105768  - -  

0 .175 2 .2841179  - -  
0 .200  2 .0483890  - -  
0 .225  1 .8731989 - -  
0 .250  1 .7403342 1 .7400000 
0 .275  1 .6381566 - -  
0 .300  1 .5588909 - -  
0 .325 1 .4971622 - -  
0 .350  1 .4491596 - -  
0 .375 1 .4121359 - -  
0 .400  1 .3840958 - -  
0 .425 1 .3635972 - -  
0 .450  1 .3496225 - -  
0 .475 1 .3414952 - -  
0 .500  1.3388281 1 .3380000 

C d is s y m m e t r i c  a r o u n d  h/H = 0.5.  
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Figure 4. The drag force factor vs droplet location. 

Faxen (Happel & Brenner 1973, p. 326) treated the particular case of a rigid particle (2 --* oo) 
moving parallel to the plates at h/H = 1/4. He utilized a different numerical scheme and obtained 
Cd = 1.74. This is a particular numerical value derived from figure 4 (or table 1) and it validates 
both schemes of analysis. 

3.4. The Equation of  the Interface 

The analysis presented so far assumes that the droplet is spherical. This is known to be accurately 
so for a slowly moving droplet in an unbounded quiescent fluid. However, in the presence of the 
neighboring plates the droplet changes its shape due to the "wall effect". This effect can be analyzed 
in the manner suggested by Hetsroni & Haber (1970) since, for small deviations from sphericity, 
the separate contributions of the reflections can be superimposed, and each even-numbered 
reflection can be regarded as an unbounded unperturbed velocity field embedding a droplet. 

For an almost spherical droplet of mean radius a, Hetsroni & Haber (i970) suggested the 
following representation: 

r = a[1 + ~(0, ~b)], [59] 

where the function describing the deviation from sphericity ~ (0, ¢)  is made up of the sum of surface 
harmonics determined via the harmonics of the unperturbed velocity field: 

1 1 
~(0, ¢) 

,~2 (n: + n -- 2)n(n + 1) (1 + 2)a 

× ~p~ n 3)an+l[(4n 3 / r" 2(2n + + 6n2 + 2n + 3)2 + (4n 3 + 6n 2 -- 4n -- 6)] 

+ .~na"-t[(4n 3 + 6n2 + 2n - 3)2 + (4n 3 + 6n 2 _ 4n)] . [60]t 

The solid harmonics p2,  ¢2 ,  described by Hetsroni & Haber (1970), are defined by Lamb's general 
representation, 

v~ = ~ Vx(rx~) + V¢~ -~ 
n=O 

P ~ =  ~ P 2 ,  
n=O 

of the unperturbed velocity and pressure fields. 

n + 3  n l 2 # ( n + l ) ( 2 n + 3 ) r 2 V p ~  #(n + l)(2n + 3) rP~ 
[61] 

fA similar expression was derived in Hetsroni & Haber (1970) though the authors hold that [60] is a more convenient 
representation for ~ (0, ¢ ). 
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If v~ and p~ are not a priori described by a spherical coordinate system, q~  and p~ can be 
obtained by a very general method which will now be outlined. With the aid of Euler's theorem 
for solid harmonics it is easy to demonstrate that, for n ~> 1, 

1 P"~ = ~ ~r" p ~ ' [62l 
r=O 

Happel & Brenner (1973, p. 63) have shown that the radial velocity component has the form 

~,  n n 3c 
vr~ = . = ,  2p(2n + 3) rp~ +-r dp~. [63] 

Thus, for n = 2 we obtain 

~ = 2- r =0; [64a] 

and for n >/3 the general form of ~b~ is 

r" cro"-Iv -1 (n - 1)(n -2)[0"-2p~ 1 } [64b] 

Note that both p~ and ~ are solely described by the given functions of v~ and p~ and their 
derivatives. 

Introduction of [62] and [64a, b] into [60] demonstrates, in the most general manner, the explicit 
relation between the deviation from sphericity function ~ (0, ~b) and the unperturbed velocity and 
pressure fields voo and p~. 

It can be shown that the nth term in [60] is of order (a/H) "-~. Thus, all terms are negligible 
compared with the first term (n = 2). However, since ~b~ is of order (a/H) 4, the last term must also 
be disregarded. Consequently, the deviation-from-sphericity function simplifies to 

4(0, ~b) = #a (19). + 16) [SUr.~ ] - [65] 
a 8(1 + 2 )  L Or Jr=0 

Since a droplet moving in an unbounded stationary field is spherical, the only contribution to 
the term [SU,/Sr],=o that need be considered is the second reflection u2. 

The solution for u2 is 

u2 = v - ul + w [66] 

where v, u~ and w are given in [18], [13] and [41], respectively. 
It can easily be shown that the flow field v -  ul induced by the image droplets does not 

contribute to the deformation of the droplet. The contribution of w, however, yields 

[ /~U° (H)2  (192 + 16)(3 + 22) ] 
r = a 1 + sin 0 cos 0 cos ~b. C~ [67] 

a 48(1 + 2) 2 

where 

Cs = ~ 2[g2(~) - g,(~)] de; [68] 

g~(~) and g2(~) are given in appendix D. 
In figure 5 and table 2, Cs is given for various drop locations h/H = 0.2 to 0.8. To illustrate the 

deviation from sphericity, [67] was evaluated for h/H = 0.75. The resulting shape is depicted with 
a magnified amplitude in figure 6. Under conditions that are physically more plausible the deviation 
from sphericity will not have such a pronounced amplitude. 
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Figure 5. Shape factor vs droplet location. 

Table 2. The shape factor 

hlH C, 
1.125 46.855032 
0.150 32.064157 
0.175 23.113142 
0.200 17.277737 
0.225 13.254568 
0.250 10.355697 
0.275 8.1895954 
0.300 6.5196094 
0.325 5.1953737 
0.350 4.1171408 
0.375 3.2160993 
0.400 2.4429503 
0.425 1.7609632 
0.450 1.1415566 
0.475 0.56133961 
0.500 0.00000000 

C~ is antisymmetric around h/H = 0.5. 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
Z 

/ / / / I / / I / . .  " / / / / / / / / I / I / / / / / / / / I / / / / / I / / /  

Figure 6. The deviation of the droplet shape from sphericity. 

4. D I S C U S S I O N  A N D  C O N C L U S I O N S  

As expected, the pressure distribution, at the parallel plates between which a droplet is located, 
is antisymmetric and reaches a maximum on the plates at x2 = 0 (plane of symmetry) and 
x~/H = 0.2 to 0.3. The closer the droplet is to the plates, the higher the pressure peak. The net effect 
on the plate consists, therefore, of a force parallel to the plane of the plates due to hydrodynamic 
shear and a couple due to the pressure profile. The latter could be of considerable significance if 
the oil film of a journal bearing contains a large number of bubbles. The net couple on the journal 
may alter the geometrical configuration and consequently affect the performance and the stability 
of the bearing. An exact calculation of the couple by means of the creeping flow solution is, 
however, impossible. The pressure decay far from the droplet is of order of 1/r, so that the total 
moment due to the pressure "tail" becomes infinite. This physically impossible result stems from 
the invalidity of Stokes' equation at some distance from the droplet. To resolve the difficulty, a 
Proudman-Pearson solution must be applied. 

The wall effect on the drag factor Cd (figure 4) is obviously symmetrical with respect to h/H = 0.5 
and impedes the motion of the droplet parallel to the plates. The drag increases as the droplet gets 
closer to the walls, and it assumes a minimum value for h/H = 0.5. Theoretically, it increases to 
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infinity for h/H = 1 (or h/H = 0). The authors, however, confined the evaluation of the drag factor 
to the region of droplet locations between h/H = 0.2 to 0.8. For regions closer to the walls, the 
number of reflections used in this work is insufficient to obtain accurate results, due to the slowly 
converging nature of the reflection solutions at high h/H and a/H ratios. 

The wall effect on the shape of a droplet is shown in figure 5. Again, the extent of distortion 
is greater for droplets close to the walls and vanishes for droplets moving along the center plane. 
This last result is not strictly correct, but it suffices for the order of approximation used here. 
Indeed, using higher-order reflections will prove the existence of small deviations from sphericity 
of the order (a/H) 3. 

It should be noted that the solutions given for the velocity and pressure fields rely on the 
assumption that the droplet has a spherical shape. As such it can be viewed as the first interation 
in the solution procedure. A second iteration must be based on the distorted shape of the droplet. 
This may give rise to a drag force perpendicular to the plates, as shown in Haber & Hetsroni (1971) 
for the case of a droplet moving along a circular tube. 

Acknowledgement---This work is part of an M.S. Thesis submitted by M. Shapira to the Senate of the 
Technion, Israel Institute of Technology. 
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A P P E N D I X  A 

The Lipshitz integral is 

l fo (a2+b2)½ = e - l a l ' J o ( b t ) d t ,  

. . . . . .  , r_.  R. R~ .  ' 

Utilizing [A.1], the following expression is obtained for the region 0 < z < H: 

n = I r_ .  R n t ~  n 

Since 

we obtain from [A.3], 

= Jo(~P)[e  ~(z-h) + e -~('-h) - e ~ ( z + h )  - e -~(:+h)] e -~2"" d ( .  
n = l  

e_¢2nH_ 
e-¢H 

. = j 2 sinh(¢H) 

~ 0  or) ' . S = - 2 J0(¢P) slnh(~h)smh(~z) e_¢Hd~" 
sinh(¢H) 

Again utilizing [A.l], the following expressions can be obtained: 

for 0 < z  <h ,  

1 1 _ f o ~  
r-o Ro o 

[e Ch-z)¢ _ e-(=+h)¢]j0(p~)d ¢ = 2 J o ( p ~ ) s i n h ( ¢ z ) e  Chd~; 

and f o r h < z < H ,  

1 1 = " ~  [e  - ( ~ - h ~  - e - ( ' + h ) q J o ( p ~ ) d ~  = 2 Jo (O~)s inh (~h )e -~ :d~ .  
ro R0 0 

Introducing [A.7] and [A.6] into [A.1] we get: 

for 0 < z  <h ,  

~ (~ ~) ff.,,,sinh[~(H-h)] . . . . .  1 _ 1 = 2 JotPg) ~ / - I )  sinh(~z)d~; 

and f o r h < z < H ,  

1 _ 1 = 2 aotPg)  ~ )  sinh[¢(n - z)]d~. 
n =  - - ~  0 

[See [13] in Liron & Mochon (1976).] 

[A.1] 

[A.2] 

[A.3] 

[A.4] 

[A.5] 

[A.6] 

[A.7] 

[A.8] 

[A.91 

A P P E N D I X  B 

In Sneddon (1951) it is shown that the two-dimensional Fourier trnasform is equal to the 
zero-order Hankel transform if g ( x ,  y ,  z )  = g ( p ,  z ) .  Hence, 

1 F ( p ) e x p [ i ( 2 ~ x  + ).2y)]dx dy = p J o ( p ~ ) F ( p ) d p  [B.1] 
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and 

where 

1 
F(~)exp[- i (21x + 22y)] d)q d22 = ~Jo(p~)F(~)d~, 

p2 = x 2 .q_ y2; 

The following case is of interest here: 

Utilizing [B.1], we can write 

¢:= ~,~+ ~.~. 

f ( x , y )  = x CJo(p~)g(~)ds. 

g(~ )exp [ -  i(21x + 22y)] d21 d22. 

Using the inverse Fourier transform we can write 

1 I f  °° f ( x , Y )  exp[i(21x +22y)]dxdy ,  
g(~)= ~ 33-® x 

and differentiating the foregoing [B.5] yields 

~-~lg(~, 1 f f  °~ = ~ if(x, y)exp[i(21x + 22y)] dx dy, 

so that 

f (2122)=- i~d~2 g ( ¢ ) =  .21 d - ,T~g(¢).  

The following case is of interest: 

H ( x , y )  = ~2x j l (p~)h(~)d  ~ 
P 

and 

From [B.1] we get 

and 

d 
H(x, y) = - Jo(p~)¢h(~)d~. 

d 1 h(~)exp[- i (2~x +22y)]d2~d2, 
H(x, y) - dx 2n -~o 

' 
= 2---n i21h(¢)exp[-i(2~x + 22y)] d21 d22 

[B.2] 

[B.3] 

[B.4] 

[B.5] 

[B.6] 

[B.7] 

[B.8] 

[B.9] 

[B.10] 

H(2,,  22) = i2,h(~). [B.I 1] 
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APPENDIX C 

The inverse Fourier transform of the following cases are of  interest. 

The first case: 

and 

Utilizing [B.2] we get 

Since 

we obtain from [C.2] 

/~'()-,, 22) = i~lf(~) 

F(x ,y )=  F(2,22)exp[-i(2jx + 22y)]d2, d22. 
02 t 

F(x,y)  = dx2rr - f (~ )exp[ - i (2~x  + 22y)] d2, d22 

dj'02 
- ~f(~)Jo(P¢) de. 

dx o 

d_ 
dxJO(p¢) = _x~ j,(p¢), 

P 

Xfo  F(x,y)  =p  ~2f(~)Jt(p~)d~. 

[c.1] 

[C.2] 

[c.3] 

[C.4] 

The second case: 

and /~(2,, )-2) = 2~h(~) l 

J 
Similar analysis to the above, yields 

n ( x , y )  =dx  ¢2h(¢)J'(P~)d~ 

[c.5] 

[C.6] 

The third case." 

and 

) d fo~¢~g(¢V,(p¢ld¢ a(x ,  y = Ty p 

[C.7] 
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A P P E N D I X  D 

' [ { FI(~) = sinh2(¢H ) _ (¢H) 2 B~ Uoa z{h s inh(¢H)¢osh[¢(H - h - z)] 

F sinh(~h) - z ) ] ]  H sinh(¢h)cosh(¢z)} + ¢Hz L H s ~  cosh[¢(H - z)] h cosh[¢(h - 

cosh[~ (H  - h)] sinh(¢h) 
+ H sinh(¢z) ~Hh ~ I - ~  h cosh(¢h) - CH 2 

sinh2(¢H) 

cosh(¢H)q~ + Uoa3 {~H sinh(¢z)[~H sinh[¢(h _ H) ] + H s i n h ( ¢ h ) ~ . j j  2B 2 si---~¢H) 

1 
F2(¢) = sinh2(¢H ) IS  1 Uoa {h sinh(¢H)eosh[¢ (H - z - h)] - H sinh(¢h)eosh(~z)} 

+ 2B2 U0 a 3¢ {sinh [¢ (H - h)lsinh [~ (H - z)] - sinh (¢h) sinh (¢z)}~ 

+ s i n h 2 ( ¢ H )  - (¢H)2(BlUoa[¢Hz{hsinh[¢(z-h)l+H sinh(¢h)sinh[¢(H-z)!} 
_ ~hH2 sinh(¢z)sinh[¢ (H  - h)] 

s inh(¢H) H(H - h )sinh(~h )sinh(~z) 

+ z {h s inh(¢H)s inh[¢(H - z - h)] + H sinh(¢h)sinh(¢z)}]  

[ z  { ~H cosh [¢ (h - z)] + sinh (¢H)cosh [¢ (H - h - z)]} + 2B2 u0 3¢ 2 a 

[D.2] 

F3(¢) = sinh~(¢n ) _ (¢n) 2 B~ Uoa ~H h sinh ~ (z - h)  + n s inh(¢H) sinh[¢ ( n  - z)] 

+ h s inh(¢H)s inh[¢(H - h - z)] + H s inh(¢h)s inh(¢z) l  

- 2B2 Uoa3¢ {¢H cosh[¢ (h - z)] + sinh(¢H)cosh[¢ (H - h - z)]}),  [D.3] 
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1 I¢ Isinh (~ h)  [cosh(¢ ~--~) + cosh(~)cosh(~h)l g~(¢) = sinh2(¢) _ ~2 ~_ [ 

-2 h~ cosh 2 (¢ h)  - (h)2 sinh(~)sinh (~ H H2h)t 

+ (1 + ~ ) [ ~  smh(~)cosh(~ H2h) - sinh(~ h)cosh(~ h 

and 

g2(¢'-sinhl2(¢)Ihsinh(~)cosh(~HH2h)-sinh(¢h.~cosh(~h~] 
n /  \ n / j  

1 h 2 . 

+ sinh2(~)_ ~2 ~[(~)smh(~)sinh(~--  2h - H . 2 h (---~-) slnh (~ ~)]. 

[D.4] 

[D.5] 


